Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior.
نویسندگان
چکیده
A recently developed atomistic method capable of calculating the fragile (non-Arrhenius) temperature behavior of highly viscous liquids is further tested by studying a model of SiO(2), a glass former well known for its Arrhenius temperature behavior (strong). The method predicts an Arrhenius temperature variation, in agreement with experiments, the origin of which is revealed by both quantitative and qualitative results on transition state pathways, activation barrier analysis, energy landscape connectivity, and atomistic activation mechanisms. Also predicted is a transition from fragile to strong behavior at a lower viscosity, below the range of measurements, which had been previously suggested on the basis of molecular dynamics simulations. By systematically comparing our findings with corresponding results on the binary Lennard-Jones system (fragile) we gain new insights into the topographical features of the potential energy landscape, characteristics that distinguish strong from fragile glassy systems. We interpret fragility as a universal manifestation of slowing of dynamics when the system becomes trapped in deep energy basins. As a consequence, all glass-forming systems, when cooled from their normal liquid state, should exhibit two transitions in temperature scaling of the viscosity, a strong-to-fragile crossover followed by a second transition reverting back to strong behavior.
منابع مشابه
Fragile-to-strong crossover in supercooled liquids remains elusive.
Transport properties of glass forming liquids change markedly around an onset temperature To. For temperatures T above To, these properties depend little with T , while for T < To these properties are super -Arrhenius – varying faster than exponentially in 1/T . Upon lowering temperature significantly further, theory [1] predicts that reversible transport in a supercooled liquid, if it can be o...
متن کاملComputing the viscosity of supercooled liquids.
We describe an atomistic method for computing the viscosity of highly viscous liquids based on activated state kinetics. A basin-filling algorithm allowing the system to climb out of deep energy minima through a series of activation and relaxation is proposed and first benchmarked on the problem of adatom diffusion on a metal surface. It is then used to generate transition state pathway traject...
متن کاملComputing the Viscosity of Supercooled Liquids: Markov Network Model
The microscopic origin of glass transition, when liquid viscosity changes continuously by more than ten orders of magnitude, is challenging to explain from first principles. Here we describe the detailed derivation and implementation of a Markovian Network model to calculate the shear viscosity of deeply supercooled liquids based on numerical sampling of an atomistic energy landscape, which she...
متن کاملRelationship between fragility, diffusive directions and energy barriers in a supercooled liquid
An analysis of diffusion in a supercooled liquid based solely in the density of diffusive directions and the value of energy barriers shows how the potential energy landscape (PEL) approach is capable of explaining the a and b relaxations and the fragility of a glassy system. We find that the b relaxation is directly related to the search for diffusive directions. Our analysis shows how in stro...
متن کاملThe role of the dynamic crossover temperature and the arrest in glass-forming fluids.
We discuss the role of the dynamic glass-forming fragile-to-strong crossover (FSC) in supercooled liquids. In the FSC, significant dynamic changes such as the decoupling (the violation of the Stokes-Einstein relation) of homologous transport parameters, e.g., the density relaxation time τ and the viscosity η, occur at a characteristic temperature T(c). We study the FSC using a scaling law appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 131 16 شماره
صفحات -
تاریخ انتشار 2009